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Abstract

Synchronization of randomly coupled networks, with each node being a van der
Pol oscillator subject to parametric excitation, is studied in the present paper.
The effects of the network structure, the initial conditions and the intensity
of Gaussian white noise on the synchronization performance of diffusively
coupled oscillators are also investigated. It is found that unidirectionally
coupled dynamical networks with proper parametric excitation can
achieve synchronization, and it is interesting to reveal that stochastic excitation
can even accelerate network synchronization under certain initial conditions
and initial intensity of stochastic excitation.

PACS numbers: 05.45.Xt, 87.19.ln, 05.40.−a, 05.40.Ca

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Synchronization of oscillations has been an important subject of research since Huygens’
observation about the synchrony between pendulum clocks [1]. It is now widely studied
and applied in many scientific fields, such as physics, biology, electronic engineering, and
meteorological, economics and even social sciences [3–7].

A complex network is a large set of interconnected nodes, in which a node is a
fundamental unit which can have different meanings in different situations such as chemical
substrates, microprocessors, computers, schools, companies, papers, webs, individual people,
and so on, and the connections among them are repressed by links (or edges) [8–12].
Synchronization of complex networks of dynamical systems has received a great deal of
attention particularly in the past decade. Several types of synchronization have been
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theoretically defined and experimentally observed in recent studies, such as completed
synchronization, lag synchronization, phase synchronization and generalized synchronization
[13–15]. Some results on network synchronization have been obtained in the literature.
To mention just a few, Chen, Zhou and Liu proved that global synchronization of coupled
DNNs can be achieved by a suitably designed coupling matrix and an inner linking matrix
[16]. Goltsev et al developed a phenomenological theory of critical phenomena in networks
with an arbitrary distribution of connectivity [17]. Cao and Wang studied some sufficient
conditions for synchronization in an array of linearly coupled networks with time-varying
delay based on the Lyapunov functional method and the matrix inequality technique [17].
Samoletov et al investigated the phenomenon of the spatiotemporal stochastic resonance in a
chain of diffusively coupled bistable oscillators [18]. Chen and Zhou studied synchronization
of uncertain generic complex networks [19]. Last but not least, Lu and Chen provided a new
approach to network synchronization analysis [20]. Arenas et al presented an overview of the
recent developments in synchronization of complex networks [21].

Noise is ubiquitous in both nature and manmade systems. It is usually regarded as random
and persistent disturbance, which obscure or reduce the clarity of signals. In related studies,
Lin and Chen showed that chaos synchronization could be achieved with probability 1 merely
via white-noise-based coupling [22], and Lin and He showed some sufficient conditions for
achieving complete synchronization between unidirectionally coupled Chua’s circuits with
stochastic perturbations [23]. Moreover, Nandi et al studied chemical reactions and genetic
networks with stochastic perturbations [24], and Korniss studied synchronization of weighted
uncorrelated scale-free networks in a noisy environment [25].

This paper continues and extends the above research endeavors to further investigate
the synchronization of networks with parametric excitation by Gaussian white noise and the
synchronization of randomly coupled networks. In this study, the main concern is the effects
of the network structure, the initial conditions and the intensity of Gaussian white noise on
the synchronization performance of networks with parametric excitations. The investigation
is basically numerical, given the fact that there are no theoretical results available in the
literature that can be used for analysis due to the complicated and difficult nature of the
stochastic network setting.

The rest of the paper is organized as follows. In section 2, a unidirectionally randomly
coupled dynamical network within noise perturbation is presented, where some preliminaries
are also provided. In section 3, several numerical examples are analyzed and discussed, with
simulation results demonstrated. Finally, section 4 concludes the paper.

2. The network model

Consider a dynamical network consisting of N linearly and diffusively coupled identical nodes,
with each node being a van der Pol oscillator, subject to parametric excitation:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋi1 = xi2 + (β + ξ2(t))

N∑
j=1

cij a11xj1

ẋi2 = −(α1 + ξ1(t))xi2 − α2x
3
i2 − ω2xi1 + (β + ξ2(t))

N∑
j=1

cij a22xj2

i = 1, 2, . . . , N,

(1)

where (xi1, xi2)
T ∈ R2 is the state vector of the ith node; a11 and a22 are the inner-displacement-

coupling coefficient and inner-velocity-coupling coefficient, respectively; C = (cij )N×N is the
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Figure 1. Synchronization displacement error in four types of networks subject only to parametric
excitation: star-coupled network, randomly coupled network (r = 0.05), small-world network
(K = 6, r = 0.005), scale-free network (the initial network is a randomly coupled network (r = 0.1,
N0 = 20, and every new node brings m0 = 10 connections to the network). The time step and the
total time are δt = 0.005, T = 2.0, respectively, and the initial conditions are randomly uniformly
distributed, with d1 = 0.001 and d2 = 0.
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Figure 2. Synchronization displacement error in a nearest-neighbor coupled network (K = 6).
The time step is δt = 0.06, and the initial conditions are randomly uniformly distributed, with
d1 = 0.001 and d2 = 0.

coupling configuration matrix, which represents the topological structure of the network and is
defined as follows: if there is no connection from node i to node j (j �= i) then cij = cji = 0;
otherwise, cij = cji = 1 (j �= i); the diagonal elements of matrix C are defined by

cii = −
N∑

j=1
j �=i

cij i = 1, 2, . . . , N, (2)
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Figure 3. Synchronization displacement error in a nearest-neighbor coupled network (K = 6).
The time step is δt = 0.06 and the initial conditions are { xi1(0)

xi2(0)
} = { 1+2×(i−N/2)/N

1−2×(i−N/2)/N
}, with

d1 = 0.001 and d2 = 0.
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Figure 4. Synchronization displacement error in a nearest-neighbor coupled network (K = 6).
The time step is δt = 0.06 and the initial conditions are { xi1(0)

xi2(0)
} = { 1+2×(i−N/2)/N

1−2×(i−N/2)/N
}, with

d1 = 0.001 and d2 = 0.

β is the mean coupling strength of the network; ξ1(t) and ξ2(t) are independent Gaussian
white noises with intensities d1 and d2, respectively.

Five types of networks, namely, star-coupled networks, randomly coupled networks,
small-world networks, scale-free networks and nearest-neighbor coupled networks, are
considered in this paper. The coupling matrix of each network is defined as follows:

(a) Star-coupled networks:

cij =

⎡
⎢⎢⎢⎢⎣

−N + 1 1 1 · · · 1
1 −1 0 · · · 0
· · · · · · · · · · · · · · ·
1 0 0 · · · 0
1 0 0 · · · −1

⎤
⎥⎥⎥⎥⎦ .
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Figure 5. Synchronization displacement error in a nearest-neighbor coupled network (K = 6).
The time step is δt = 0.06 and the initial conditions are { xi1(0)

xi2(0)
} = { 1+2×(i−N/2)/N

1−2×(i−N/2)/N
}, with

d1 = 0.001 and d2 = 0.
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Figure 6. Synchronization displacement error in a nearest-neighbor coupled network (K = 6).
The time step is δt = 0.06 and the initial conditions are { xi1(0)

xi2(0)
} = { 1+2×(i−N/2)/N

1−2×(i−N/2)/N
}, with

d1 = 0.001 and d2 = 0.

(b) Randomly coupled networks:

p(cij = 1) = r, p(cij = 0) = 1 − r, cij = cji, cii = −
N∑

j=1
j �=i

cij ,

where p(cij = 1) is the probability of cij = 1.
(c) Nearest-neighbor coupled networks:

Every node connects K/2 left-neighboring nodes and K/2 right-neighboring nodes, where
K is an even number.
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Figure 7. Mean time E[t] and standard deviation σ of synchronization and the proportion of
failure to achieve synchronization, M, with different noise intensities, 500 samples were used for
determining the system parameters. (a) Mean time and standard deviation of synchronization; (b)
proportion of failure to achieve synchronization. Initial conditions are { xi1(0)

xi2(0)
} = { 1+(i−N/2)/N

1−(i−N/2)/N
}.

Gaussian white noise intensity d1 is 0.0005, 0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.05, 0.08, 0.1,
0.5 and 1.0.

(d) Small-world networks:

To start, the initial matrix is the nearest-neighbor coupled network. Then, the elements
change from cij = 0 to cij = 1 with the probability r. Finally, cii = −∑N

j=1
j �=i

cij [26].

(e) Scale-free network:

The coupling matrix is defined as the same as that in [27].
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Figure 8. Mean time E[t] and standard deviation σ of synchronization and the proportion of
failure to achieve synchronization, M, with different noise intensities, 500 samples were used for
determining the system parameters. (a) Mean time and standard deviation of synchronization;
(b) proportion of failure to achieve synchronization. Initial conditions are randomly uniformly
distributed in a semicircle, namely, { xi1(0)

xi2(0)
} = { 1.10 cos((i−1)×3.14/N)

1.10 sin((i−1)×3.14/N)
}. Gaussian white noise

intensity d1 is 0.0001, 0.0003, 0.0005, 0.0008, 0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.05 and
0.08.

3. Numerical examples

The fourth-order Runge–Kutta method is used to simulate all the five types of dynamical
networks. In the simulations, the network parameters are given as follows: N = 500,
a11 = a22 = 1, β = 1, α1 = −0.05, α2 = 0.05, ω = 1.0.

To measure the synchronization performance, define the errors by

e(t) =
{
e1(t)

e2(t)

}
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

N

N∑
i=2

(xi1(t) − x11(t))
2

1

N

N∑
i=2

(xi2(t) − x12(t))
2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (3)
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Figure 9. Synchronization displacement error in a star-coupled network, randomly coupled
network (r = 0.05), small-world network (K = 6, r = 0.005), scale-free network (the initial
network is a randomly coupled network (r = 0.1, N0 = 20, and every new node brings m0 = 10
connections to the network). The time step is δt = 0.005 and the initial conditions are randomly
uniformly distributed, with d1 = 0.001 and d2 = 0.

As usual, the network achieves synchronization if e(t) approaches zero as time tends to
infinity.

First, the synchronization of networks subject only to parametric excitation, i.e., with
d2 = 0, is investigated. It can be seen from figures 1 and 2 that complete synchronization
between the 500 nodes, with initial conditions (xi1(0), xi2(0))T randomly uniformly distributed
in (−1, 1) × (−1, 1), can be achieved. It can also be seen that synchronization performances
in different types of network are not quite the same. Obviously, synchronization in the
nearest-neighbor coupled network is realized more difficultly than the other four types of
networks.

The effect of initial conditions is also studied. Comparing figures 2 with 3, it can be
observed that the synchronizing processes with different initial conditions in the same network
are also different. It can be seen from figures 1–3, for instance, that network synchronization
not only is influenced by the type of network, but also is sensitive to its initial conditions.

Furthermore, the effect of the intensity of the Gaussian white noise on the synchronization
performance is studied. Herein, the nearest-neighbor coupled network with K = 6 is
considered. It can be seen from figures 3–6 that a proper intensity of the Gaussian white
noise could shorten the time of synchronization and the parametric excitation could enhance
the network synchronization to a certain extent. It should be pointed out that the results for
the error e2(t) are similar to those shown in figures 1–6. In order to make this observed
phenomenon more creditable, multi-samples tests are carried out. To do so, several new
parameters are first introduced.

(1) Time of synchronization, ti(i = 1, 2, . . . , m), where m = 500 is the sample number:
when

∑k+150
j=k e1j � (150/500) and

∑k+150
j=k e2j � (150/500), it is considered to have

achieved synchronization, and define ti = δt × (k + 75), where δt and k denote the time
step and the step number, respectively. If t � 1500, it is considered failing to achieve
synchronization.

(2) Mean time of synchronization, E[t]. It represents the ability of network to achieve
synchronization.
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Figure 10. Synchronization displacement error in a nearest-neighbor coupled network (K = 6).
The time step is δt = 0.06 and the initial conditions are randomly uniformly distributed, with
d1 = 0.001 and d2 = 0.
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Figure 11. Synchronization displacement error in a star-coupled network, randomly coupled
network (r = 0.05), small-world network (K = 6, r = 0.005), scale-free network (the initial
network is a randomly coupled network (r = 0.1, N0 = 20, and every new node brings m0 = 10
connections to the network). The time step is δt = 0.001 and the initial conditions are randomly
uniformly distributed, with d1 = 0.001 and d2 = 0.

(3) Standard deviation σ : it represents the degree of stability of synchronization.
(4) Proportion of failure to achieve synchronization, M: it represents the ability of achieving

desynchronization due to parametric excitation by the Gaussian white noise.

It can be shown from figures 7 and 8 that the time of synchronization falls down with the
increase in the noise intensity within a certain range. In other words, a proper Gaussian white
noise can enhance the ability of network synchronization. When the noise intensity is greater
than a certain value, the time of synchronization climbs up again. Note that the proportion
of failure to achieve synchronization increases as well. Especially in figure 8(b), M increases
rapidly when d1 > 0.01. Therefore, the choice of noise intensity is not unlimited. Several
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numerical simulations with different initial conditions show that accelerating synchronization
subject to parametric excitation does not always happen. For example, when the initial
conditions are randomly uniformly distributed in (−1, 1) × (−1, 1), the ability of enhancing
network synchronization is not so visible and even desynchronization occurs due to parametric
excitation in many occasions.

The case where the network has random coupling only, i.e., with d1 = 0, has also been
simulated and analyzed. Figures 9 and 10 show the synchronization performances in all the
five types of complex networks, all with d2 = 0.001, while figure 11 shows the synchronization
in only four types of networks, all with d2 = 0.01. It can be seen from figure 11 that the ways
to evolve to synchrony in the four networks are more fluctuant than the one shown in figure 9.

4. Conclusions

In this paper, the important yet difficult problem of complex network synchronization subject
to parametric excitation of Gaussian white noise has been investigated numerically. It is
found that unidirectionally coupled dynamical networks within proper parametric excitation
can achieve synchronization. It is also found that the noise perturbation can even accelerate
network synchronizability in some cases. Synchronization of randomly coupled networks has
also been studied, revealing that randomly coupled networks can also achieve synchronization
subject to proper noise perturbations. In the future, mathematical analysis of the stochastic
networks need to be carried out, so as to provide a theoretical background for supporting the
numerical simulations and to provide in-depth explanation of the experimental observations.
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